
Chapter 2

Geometry

Our tour of theoretical physics begins with geometry, and there are two reasons
for this. One is that the framework of space and time provides, as it were, the
stage upon which physical events are played out, and it will be helpful to gain a
clear idea of what this stage looks like before introducing the cast. As a matter of
fact, the geometry of space and time itself plays an active role in those physical
processes that involve gravitation (and perhaps, according to some speculative
theories, in other processes as well). Thus, our study of geometry will culminate,
in chapter 4, in the account of gravity offered by Einstein’s general theory of
relativity. The other reason for beginning with geometry is that the mathematical
notions we develop will reappear in later contexts.

To a large extent, the special and general theories of relativity are ‘negative’
theories. By this I mean that they consist more in relaxing incorrect, though
plausible, assumptions that we are inclined to make about the nature of space
and time than in introducing new ones. I propose to explain how this works in
the following way. We shall start by introducing a prototype version of space
and time, called a ‘differentiable manifold’, which possesses a bare minimum of
geometrical properties—for example, the notion of length is not yet meaningful.
(Actually, it may be necessary to abandon even these minimal properties if, for
example, we want a geometry that is fully compatible with quantum theory and
I shall touch briefly on this in chapter 15.) In order to arrive at a structure
that more closely resembles space and time as we know them, we then have to
endow the manifold with additional properties, known as an ‘affine connection’
and a ‘metric’. Two points then emerge: first, the common-sense notions of
Euclidean geometry correspond to very special choices for these affine and metric
properties; second, other possible choices lead to geometrical states of affairs that
have a natural interpretation in terms of gravitational effects. Stretching the point
slightly, it may be said that, merely by avoiding unnecessary assumptions, we
are able to see gravitation as something entirely to be expected, rather than as a
phenomenon in need of explanation.

To me, this insight into the ways of nature is immensely satisfying, and it
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is in the hope of communicating this satisfaction to readers that I have chosen to
approach the subject in this way. Unfortunately, the assumptions we are to avoid
are, by and large, simplifying assumptions, so by avoiding them we let ourselves
in for some degree of complication in the mathematical formalism. Therefore, to
help readers preserve a sense of direction, I will, as promised in chapter 1, provide
an introductory section outlining a more traditional approach to relativity and
gravitation, in which we ask how our naı̈ve geometrical ideas must be modified
to embrace certain observed phenomena.

2.0 The Special and General Theories of Relativity

2.0.1 The special theory

The special theory of relativity is concerned in part with the relation between
observations of some set of physical events in two inertial frames of reference
that are in relative motion. By an inertial frame, we mean one in which Newton’s
first law of motion holds:

Every body continues in its state of rest, or of uniform motion in a right line,
unless it is compelled to change that state by forces impressed on it.
(Newton 1686)

It is worth noting that this definition by itself is in danger of being a mere
tautology, since a ‘force’ is in effect defined by Newton’s second law in terms
of the acceleration it produces:

The change of motion is proportional to the motive force impressed; and is
made in the direction of the right line in which that force is impressed.
(Newton 1686)

So, from these definitions alone, we have no way of deciding whether some
observed acceleration of a body relative to a given frame should be attributed, on
the one hand, to the action of a force or, on the other hand, to an acceleration of
the frame of reference. Eddington has made this point by a facetious re-rendering
of the first law:

Every body tends to move in the track in which it actually does move, except
insofar as it is compelled by material impacts to follow some other track than
that in which it would otherwise move.
(Eddington 1929)

The extra assumption we need, of course, is that forces can arise only from the
influence of one body on another. An inertial frame is one relative to which any
body sufficiently well isolated from all other matter for these influences to be
negligible does not accelerate. In practice, needless to say, this isolation cannot
be achieved. The successful application of Newtonian mechanics depends on our
being able systematically to identify, and take proper account of, all those forces
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Figure 2.1. Two systems of Cartesian coordinates in relative motion.

that cannot be eliminated. To proceed, we must take it as established that, in
principle, frames of reference can be constructed, relative to which any isolated
body will, as a matter of fact, always refuse to accelerate. These frames we call
inertial.

Obviously, any two inertial frames must either be relatively at rest or have a
uniform relative velocity. Consider, then, two inertial frames, S and S′ (standing
for Systems of coordinates) with Cartesian axes so arranged that the x and x ′ axes
lie in the same line, and suppose that S′ moves in the positive x direction with
speed v relative to S. Taking y ′ parallel to y and z′ parallel to z, we have the
arrangement shown in figure 2.1. We assume that the sets of apparatus used to
measure distances and times in the two systems are identical and, for simplicity,
that both clocks are adjusted to read zero at the moment the two origins coincide.

Suppose that an event at the coordinates (x, y, z, t) relative to S is observed
at (x ′, y ′, z′, t ′) relative to S′. According to the Galilean, or common-sense, view
of space and time, these two sets of coordinates must be related by

x ′ = x − vt y ′ = y z′ = z t ′ = t . (2.1)

Since the path of a moving particle is just a sequence of events, we easily find that
its velocity relative to S, in vector notation u = dx/dt , is related to its velocity
u′ = dx ′/dt ′ relative to S′ by u′ = u − v, with v = (v, 0, 0), and that its
acceleration is the same in both frames, a′ = a.

Despite its intuitive plausibility, the common-sense view turns out to be
mistaken in several respects. The special theory of relativity hinges on the fact
that the relation u′ = u − v is not true. That is to say, this relation disagrees with
experimental evidence, although discrepancies are detectable only when speeds
are involved whose magnitudes are an appreciable fraction of a fundamental
speed c, whose value is approximately 2.998 × 108 m s−1. So far as is known,
light travels through a vacuum at this speed, which is, of course, generally
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called the speed of light. Indeed, the speed of light is predicted by Maxwell’s
electromagnetic theory to be (ε0µ0)

−1/2 (in SI units, where ε0 and µ0 are called
the permittivity and permeability of free space, respectively) but the theory does
not single out any special frame relative to which this speed should be measured.
For quite some time after the appearance of Maxwell’s theory (published in its
final form in 1864; see also Maxwell (1873)), it was thought that electromagnetic
radiation consisted of vibrations of a medium, the ‘luminiferous ether’, and would
travel at the speed c relative to the rest frame of the ether. However, a number
of experiments cast doubt on this interpretation. The most celebrated, that of
Michelson and Morley (1887), showed that the speed of the Earth relative to the
ether must, at any time of year, be considerably smaller than that of its orbit
round the Sun. Had the ether theory been correct, of course, the speed of the
Earth relative to the ether should have changed by twice its orbital speed over a
period of six months. The experiment seemed to imply, then, that light always
travels at the same speed, c, relative to the apparatus used to observe it.

In his paper of 1905, Einstein makes the fundamental assumption (though
he expresses things a little differently) that light travels with exactly the same
speed, c, relative to any inertial frame. Since this is clearly incompatible with
the Galilean transformation law given in (2.1), he takes the remarkable step of
modifying this law to read

x ′ = x − vt

(1 − v2/c2)1/2
y ′ = y

z′ = z t ′ = t − vx/c2

(1 − v2/c2)1/2
.

(2.2)

These equations are known as the Lorentz transformation, because a set of
equations having essentially this form had been written down by H A Lorentz
(1904) in the course of his attempt to explain the results of Michelson and Morley.
However, Lorentz believed that his equations described a mechanical effect of the
ether upon bodies moving through it, which he attributed to a modification of
intermolecular forces. He does not appear to have interpreted them as Einstein
did, namely as a general law relating coordinate systems in relative motion. The
assumptions that lead to this transformation law are set out in exercise 2.1, where
readers are invited to complete its derivation. Here, let us note that (2.2) does
indeed embody the assumption that light travels with speed c relative to any
inertial frame. For example, if a pulse of light is emitted from the common origin
of S and S′ at t = t ′ = 0, then the equation of the resulting spherical wavefront
at time t relative to S is x2 + y2 + z2 = c2t2. Using the transformation (2.2), we
easily find that its equation at time t ′ relative to S′ is x ′2 + y ′2 + z′2 = c2t ′2.

Many of the elementary consequences of special relativity follow directly
from the Lorentz transformation, and we shall meet some of them in later
chapters. What particularly concerns us at present—and what makes Einstein’s
interpretation of the transformation equations so remarkable—is the change that
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these equations require us to make in our view of space and time. On the face of
it, equations (2.1) or (2.2) simply tell us how to relate observations made in two
different frames of reference. At a deeper level, however, they contain information
about the structure of space and time that is independent of any frame of reference.
Consider two events with spacetime coordinates (x1, t1) and (x2, t2) relative to
S. According to the Galilean transformation, the time interval t2 − t1 between
them relative to S is equal to the interval t ′2 − t ′1 relative to S′. In particular, it
may happen that these two events are simultaneous, so that t2 − t1 = 0, and
this statement would be equally valid from the point of view of either frame
of reference. For two simultaneous events, the spatial distances between them,
|x1 − x2| and |x ′

1 − x ′
2| are also equal. Thus, the time interval between two events

and the spatial distance between two simultaneous events have the same value in
every inertial frame, and hence have real physical meanings that are independent
of any system of coordinates. According to the Lorentz transformation (2.2),
however, both the time interval and the distance have different values relative to
different inertial frames. Since these frames are arbitrarily chosen by us, neither
the time interval nor the distance has any definite, independent meaning. The one
quantity that does have a definite, frame-independent meaning is the proper time
interval �τ , defined by

c2�τ 2 = c2�t2 − �x2 (2.3)

where �t = t2 − t1 and �x = |x2 − x1|. By using (2.2), it is easy to verify that
c2�t ′2 − �x ′2 is also equal to c2�τ 2.

We see, therefore, that the Galilean transformation can be correct only in
a Galilean spacetime; that is, a spacetime in which both time intervals and
spatial distances have well-defined meanings. For the Lorentz transformation to
be correct, the structure of space and time must be such that only proper-time
intervals are well defined. There are, as we shall see, many such structures. The
one in which the Lorentz transformation is valid is called Minkowski spacetime
after Hermann Minkowski who first clearly described its geometrical properties
(Minkowski, 1908). These properties are summarized by the definition (2.3) of
proper time intervals. In this definition, the constant c does not refer to the speed
of anything. Although it has the dimensions of velocity, its role is really no more
than that of a conversion factor between units of length and time. Thus, although
the special theory of relativity arose from attempts to understand the propagation
of light, it has nothing to do with electromagnetic radiation as such. Indeed, it
is not in essence about relativity either! Its essential feature is the structure of
space and time expressed by (2.3), and the law for transforming between frames
in relative motion serves only as a clue to what this structure is. With this in
mind, Minkowski (1908) says of the name ‘relativity’ that it ‘. . . seems to me very
feeble’.

The geometrical structure of space and time restricts the laws of motion that
may govern the dynamical behaviour of objects that live there. This is true, at
least, if one accepts the principle of relativity, expressed by Einstein as follows:
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The laws by which the states of physical systems undergo change are not
affected, whether these changes of state be referred to the one or the other of
two systems of coordinates in uniform translatory motion.
(Einstein 1905)

Any inertial frame, that is to say, should be as good as any other as far as the
laws of physics are concerned. Mathematically, this means that the equations
expressing these laws should be covariant—they should have the same form in
any inertial frame. Consider, for example, two objects, with masses m1 and m2,
situated at x1 and x2 on the x axis of S. According to Newtonian mechanics and
the Newtonian theory of gravity, the equation of motion for particle 1 is

m1
d2x1

dt2 = (Gm1m2)
x2 − x1

|x2 − x1|3 (2.4)

where G � 6.67 × 10−11N m2 kg−2 is Newton’s gravitational constant. If
spacetime is Galilean and the transformation law (2.1) is valid, then d2x ′/dt ′2 =
d2x/dt2 and (x ′

2 − x ′
1) = (x2 − x1), so in S′ the equation has exactly the same

form and Einstein’s principle is satisfied. In Minkowski spacetime, we must
use the Lorentz transformation. The acceleration relative to S is not equal to
the acceleration relative to S′ (see exercise 2.2), but worse is to come! On
the right-hand side, x1 and x2 refer to two events, namely the objects reaching
these two positions, which occur simultaneously as viewed from S. As viewed
from S′, however, these two events are separated by a time interval (t ′2 − t ′1) =
(x ′

1 − x ′
2)v/c2, as readers may easily verify from (2.2). In Minkowski spacetime,

therefore, (2.4) does not respect the principle of relativity. It is unsatisfactory as
a law of motion because it implies that there is a preferred inertial frame, namely
S, relative to which the force depends only on the instantaneous separation of the
two objects; relative to any other frame, it depends on the distance between their
positions at different times, and also on the velocity of the frame of reference
relative to the preferred one. Actually, we do not know a priori that there is no
such preferred frame. In the end, we trust the principle of relativity because the
theories that stem from it explain a number of observed phenomena for which
Newtonian mechanics cannot account.

We might imagine that electrical forces would present a similar problem,
since we obtain Coulomb’s law for particles with charges q1 and q2 merely
by replacing the constant in parentheses in (2.4) with −q1q2/4πε0. In fact,
Maxwell’s theory is not covariant under Galilean transformations, but can be
made covariant under Lorentz transformations with only minor modifications.
We shall deal with electromagnetism in some detail later on, and I do not want
to enter into the technicalities at this point. We may note, however, the features
that favour Lorentz covariance. In Maxwell’s theory, the forces between charged
particles are transmitted by electric and magnetic fields. We know that the fields
due to a charged particle do indeed appear different in different inertial frames:
in a frame in which the particle is at rest, we see only an electric field, while in
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a frame in which the particle is moving, we also see a magnetic field. Moreover,
disturbances in these fields are transmitted at the speed of light. The problem
of simultaneity is avoided because a second particle responds not directly to the
first one, but rather to the electromagnetic field at its own position. The expression
analogous to the right-hand side of (2.4) for the Coulomb force is valid only when
there is a frame of reference in which particle 2 can be considered fixed, and then
only as an approximation.

2.0.2 The general theory

The experimental fact that eventually led to the special theory was, as we have
seen, the constancy of the speed of light. The general theory, and the account that
it provides of gravitation, also spring from a crucial fact of observation, namely
the equality of inertial and gravitational masses. In (2.4), the mass m1 appears in
two different guises. On the left-hand side, m1 denotes the inertial mass, which
governs the response of the body to a given force. On the right-hand side, it
denotes the gravitational mass, which determines the strength of the gravitational
force. The gravitational mass is analogous to the electric charge in Coulomb’s
law and, since the electrical charge on a body is not necessarily proportional
to its mass, there is no obvious reason why the gravitational ‘charge’ should be
determined by the mass either. The equality of gravitational and inertial masses
is, of course, responsible for the fact that the acceleration of a body in the Earth’s
gravitational field is independent of its mass, and this has been familiar since the
time of Galileo and Newton. It was checked in 1889 to an accuracy of about one
part in 109 by Eötvös, whose method has been further refined more recently by R
H Dicke and his collaborators.

It seemed to Einstein that this precise equality demanded some explanation,
and he was struck by the fact that inertial forces such as centrifugal and Coriolis
forces are proportional to the inertial mass of the body on which they act. These
inertial forces are often regarded as ‘fictitious’, in the sense that they arise from
the use of accelerating (and therefore non-inertial) frames of reference. Consider,
for example, a spaceship far from any gravitating bodies such as stars or planets.
When its motors are turned off, a frame of reference S fixed in the ship is inertial
provided, as we assume, that it is not spinning relative to distant stars. Relative
to this frame, the equation of motion of an object on which no forces act is
md2x/dt2 = 0. Suppose the motors are started at time t = 0, giving the ship
a constant acceleration a in the x direction. S is now not an inertial frame. If S′ is
the inertial frame that coincided with S for t < 0, then the equation of the object
is still md2x ′/dt ′2=0, at least until the object collides with the cabin walls. Using
Galilean relativity for simplicity, we have x ′ = x + 1

2 at2 and t ′ = t , so relative to
S the equation of motion is

m
d2x

dt2
= −ma. (2.5)

The force on the right-hand side arises trivially from the coordinate transformation
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and is definitely proportional to the inertial mass.
Einstein’s idea is that gravitational forces are of essentially the same kind as

that appearing in (2.5), which means that the inertial and gravitational masses are
necessarily identical. Suppose that the object in question is in fact a physicist,
whose ship-board laboratory is completely soundproof and windowless. His
sensation of weight, as expressed by (2.5), is equally consistent with the ship’s
being accelerated by its motors or with its having landed on a planet at whose
surface the acceleration due to gravity is a. Conversely, when he was apparently
weightless, he would be unable to tell whether his ship was actually in deep space
or freely falling towards a nearby planet. This illustrates Einstein’s principle of
equivalence, according to which the effects of a gravitational field can locally be
eliminated by using a freely-falling frame of reference. This frame is inertial and,
relative to it, the laws of physics take the same form that they would have relative
to any inertial frame in a region far removed from any gravitating bodies.

The word ‘locally’ indicates that the freely-falling inertial frame can usually
extend only over a small region. Let us suppose that our spaceship is indeed
falling freely towards a nearby planet. (Readers may rest assured that the
pilot, unlike the physicist, is aware of this and will eventually act to avert the
impending disaster.) If he has sufficiently accurate apparatus, the physicist can
detect the presence of the planet in the following way. Knowing the standard
landing procedure, he allows two small objects to float freely on either side of his
laboratory, so that the line joining them is perpendicular to the direction in which
he knows that the planet, if any, will lie. Each of these objects falls towards the
centre of the planet, and therefore their paths slowly converge. As observed in
the freely-falling laboratory, they do not accelerate in the direction of the planet,
but they do accelerate towards each other, even though their mutual gravitational
attraction is negligible. (The tendency of the cabin walls to converge in the same
manner is, of course, counteracted by interatomic forces within them.) Strictly,
then, the effects of gravity are eliminated in the freely-falling laboratory only
to the extent that two straight lines passing through it, which meet at the centre
of the planet, can be considered parallel. If the laboratory is small compared
with its distance from the centre of the planet, then this will be true to a very
good approximation, but the equivalence principle applies exactly only to an
infinitesimal region.

The principle of equivalence as stated above is not as innocuous as it might
appear. We illustrated it by considering the behaviour of freely-falling objects,
and found that it followed in a more or less trivial manner from the equality
of gravitational and inertial masses. A version restricted to such situations
is sometimes called the weak principle of equivalence. The strong principle,
applying to all the laws of physics, has much more profound implications. It led
Einstein to the view that gravity is not a force of the usual kind. Rather, the effect
of a massive body is to modify the geometry of space and time. Particles that are
not acted on by any ordinary force do not accelerate; they merely appear to be
accelerated by gravity if we make the false assumption that the geometry is that
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of Galilean or Minkowski spacetime and interpret our observations accordingly.
Consider again the expression for proper time intervals given in (2.3). It

is valid when (x, y, z, t) refer to Cartesian coordinates in an inertial frame of
reference. In the neighbourhood of a gravitating body, a freely-falling inertial
frame can be defined only in a small region, so we write it as

c2(dτ )2 = c2(dt)2 − (dx)2 (2.6)

where dt and dx are infinitesimal coordinate differences. Now let us make a
transformation to an arbitrary system of coordinates (x0, x1, x2, x3), each new
coordinate being expressible as some function of x , y, z and t . Using the chain
rule, we find that (2.6) becomes

c2(dτ )2 =
3∑

µ,ν=0

gµν(x)dxµdxν (2.7)

where the functions gµν(x) are given in terms of the transformation functions.
They are components of what is called the metric tensor. In the usual version
of general relativity, it is the metric tensor that embodies all the geometrical
structure of space and time. Suppose we are given a set of functions gµν(x) which
describe this structure in terms of some system of coordinates {xµ}. According to
the principle of equivalence, it is possible at any point (say X , with coordinates
Xµ) to construct a freely falling inertial frame, valid in a small neighbourhood
surrounding X , relative to which there are no gravitational effects and all other
processes occur as in special relativity. This means that it is possible to find a set
of coordinates (ct, x, y, z) such that the proper time interval (2.7) reverts to the
form of (2.6). Using a matrix representation of the metric tensor, we can write

gµν(X) = ηµν ≡


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (2.8)

where ηµν is the special metric tensor corresponding to (2.6).
If the geometry is that of Minkowski spacetime, then it will be possible to

choose (ct, x, y, z) in such a way that gµν = ηµν everywhere. Otherwise, the
best we can usually do is to make gµν = ηµν at a single point (though that point
can be anywhere) or at every point along a curve, such as the path followed by an
observer. Even when we do not have a Minkowski spacetime, it may be possible
to set up an approximately inertial and approximately Cartesian coordinate system
such that gµν differs only a little from ηµν throughout a large region. In such a
case, we can do much of our physics successfully by assuming that spacetime is
exactly Minkowskian. If we do so, then, according to general relativity, we shall
interpret the slight deviations from the true Minkowski metric as gravitational
forces.
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This concludes our introductory survey of the theories of relativity. We
have concentrated on the ways in which our common-sense ideas of spacetime
geometry must be modified in order to accommodate two key experimental
observations: the constancy of the speed of light and the equality of gravitational
and inertial masses. It is clear that the modified geometry leads to modifications in
the laws that govern the behaviour of physical systems, but we have not discussed
these laws in concrete terms. That we shall be better equipped to do after we have
developed some mathematical tools in the remainder of this chapter. At that stage,
we shall be able to see much more explicitly how gravity arises from geometry.

2.1 Spacetime as a Differentiable Manifold

Our aim is to construct a mathematical model of space and time that involves
as few assumptions as possible, and to be explicitly aware of the assumptions
we do make. In particular, we have seen that the theories of relativity call into
question the meanings we attach to distances and time intervals, and we need
to be clear about these. The mathematical structure that has proved to be a
suitable starting point, at least for a non-quantum-mechanical model of space
and time, is called a differentiable manifold. It is a collection of points, each
of which will eventually correspond to a unique position in space and time, and
the whole collection comprises the entire history of our model universe. It has
two key features that represent familiar facts about our experience of space and
time. The first is that any point can be uniquely specified by a set of four real
numbers, so spacetime is four-dimensional. For the moment, the exact number
of dimensions is not important. Later on, indeed, we shall encounter some recent
theories which suggest that there may be more than four, the extra ones being
invisible to us. Even in more conventional theories, we shall find that it is helpful
to consider other numbers of dimensions as a purely mathematical device. The
second feature is a kind of ‘smoothness’, meaning roughly that, given any two
distinct points, there are more points in between them. This feature allows us to
describe physical quantities such as particle trajectories or electromagnetic fields
in terms of differentiable functions and hence to do theoretical physics of the usual
kind. We do not know for certain that space and time are quite as smooth as this,
but at least there is no evidence for any granularity down to the shortest distances
we are able to probe experimentally.

Our first task is to express these properties in a more precise mathematical
form. It is of fundamental importance that this can be done without recourse to
any notion of length. The properties we require are topological ones, and we begin
by introducing some elementary ideas of topology. Roughly speaking, we want to
be able to say that some pairs of points are ‘closer together’ than others, without
having any quantitative measure of distance. As an illustration, consider a sheet
of rubber, marked off into different regions as in figure 2.2. For the purposes of
this illustration, we shall say that there is no definite distance between two points
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Figure 2.2. A deformable sheet of rubber, divided into several regions. Although there
is no definite distance between the points indicated by • , there are always other points
between them, because any curve joining them must pass through at least one of the regions
b, e and h.

on the sheet, because it can be deformed at will. No matter how it is deformed,
however, any given region is still surrounded by the same neighbouring regions.
Given a point in d and another in f, we can never draw a line between them that
does not pass through at least one of regions b, e and h. The same holds, moreover,
of more finely subdivided regions, as shown for subdivisions of a, each of which
could be further subdivided, and so on. In this sense, points on the sheet are
smoothly connected together. The smoothness would be lost if the rubber were
vaporized, the individual molecules being considered as the collection of points.
Mathematically, the kind of smoothness we want is a property of the real line
(that is, the set of all real numbers, denoted by R). So, as part of the definition
of the manifold, we demand that it should be possible to set up correspondences
(called ‘maps’) between points of the manifold and sets of real numbers. We shall
next look at the topological properties of real numbers, and then see how we can
ensure that the manifold shares them.

2.1.1 Topology of the real line R and of Rd

The topological properties we are interested in are expressed in terms of ‘open
sets’, which are defined in the following way. An open interval (a, b) is the set of
all points (real numbers) x such that a < x < b:

· · · · · ·( )|
a x b
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Figure 2.3. (a) An open set in R2. It is a union of open rectangles constructed from unions
of open intervals in the two copies of R which form the x1 and x2 axes. (b) Another open
set in R2, which can be constructed as a union of open rectangles.

The end points x = a and x = b are excluded. Consequently, any point x in
(a, b) can be surrounded by another open interval (x − ε, x + ε), all of whose
points are also in (a, b). For example, however close x is to a, it cannot be equal
to a. There are always points between a and x , and if x is closer to a than to b,
we can take ε = (x − a)/2. An open set of R is defined as any union of 1, 2, 3,
. . . open intervals:

( ) or ( ) ( ) or ( ) ( ) ( )

etc. (The union A ∪ B ∪C · · · of a number of sets is defined as the set of all points
that belong to at least one of A, B,C, . . . . The intersection A ∩ B ∩ C · · · is the
set of all points that belong to all the sets A, B,C, . . . .) In addition, the empty
set, which contains no points, is defined to be an open set.

The space R2 is the set of all pairs of real numbers (x1, x2), which can be
envisaged as an infinite plane. The definition of open sets is easily extended to R2 ,
as illustrated in figure 2.3. If x1 lies in a chosen open interval on the horizontal
axis, and x2 in a chosen open interval on the vertical axis, then (x1, x2) lies in an
open rectangle corresponding to these two intervals. Any union of open rectangles
is an open set. Since the rectangles can be arbitrarily small, we can say that any
region bounded by a closed curve, but excluding points actually on the curve, is
also an open set, and so is any union of such regions. Obviously, the same ideas
can be further extended to Rd , which is the set of all d-tuples of real numbers
(x1, x2, . . . , xd).

An important use of open sets is to define continuous functions. Consider,
for instance, a function f which takes real numbers x as arguments and has real-
number values y = f (x). An example is shown in figure 2.4. The inverse image
of a set of points on the y axis is the set of all those points on the x axis for
which f (x) belongs to the original set. Then we say that f is continuous if the
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Figure 2.4. The graph y = f (x) of a function which is discontinuous at x0. Any open
interval of y which includes f (x0) has an inverse image on the x axis which is not open.
The inverse image of an interval in y which contains no values of f (x) is the empty set.

inverse image of any open set on the y axis is an open set on the x axis. The
example shown fails to be continuous because the inverse image of any open
interval containing f (x0) contains an interval of the type (x1, x0], which includes
the end point x0 and is therefore not open. (Readers who are not at home with this
style of argument should spend a short while considering the implications of these
definitions: why, for example, is it necessary to include not only open intervals
but also their unions and the empty set as open sets?)

The open sets of Rd have two fairly obvious properties: (i) any union of
open sets is itself an open set; (ii) any intersection of a finite number of open
sets is itself an open set. Given any space (by which we mean a set of points),
suppose that a collection of subsets of its points is specified, such that any union
or finite intersection of them also belongs to the collection. We also specify that
the entire space (which counts as a subset of itself) and the empty set belong to
the collection. Then the subsets in this collection may, by analogy, be called open
sets. The collection of open sets is called a topology and the space, together with
its topology, is called a topological space. It is, of course, possible to endow a
given space with many different topologies. For example, the collection of all
subsets of the space clearly satisfies all the above conditions, and is called the
discrete topology. By endowing the real line with this topology, we would obtain
a new definition of continuity—it would not be a particularly useful definition,
however, as any function at all would turn out to be continuous. The particular
topology of Rd described above is called the natural topology and is the one we
shall always use.

It is important to realize that a topology is quite independent of any notion
of distance. For instance, a sheet of paper may be regarded as a part of R2 .
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The natural topology reflects the way in which its points fit together to form
a coherent structure. If it is used to draw figures in Euclidean geometry,
then the distance D between two points is defined by the Pythagoras rule as

D = [
(�x)2 + (�y)2

]1/2
. But it might equally well be used to plot the mean

atmospheric concentration of carbon monoxide in central London (represented
by y) as a function of time (represented by x), in which case D would have no
sensible meaning.

A topology imposes two kinds of structure on the space. The local
topology—the way in which open sets fit inside one another over small regions—
determines the way in which notions like continuity apply to the space. The global
topology—the way in which the open sets can be made to cover the whole space—
determines its overall structure. Thus, the plane, sphere and torus have the same
local structure but different global structures. Physically, we have no definite
information about the global topology of spacetime, but its local structure seems
to be very similar to that of R4 (though we shall encounter speculative theories
that call this apparently simple observation into question).

2.1.2 Differentiable spacetime manifold

In order that our model of space and time should be able to support continuous
and differentiable functions of the sort that we rely on to do physics, we want it
(for now) to have the same local topology as R4 . First of all, then, it must be
a topological space. That is, it must have a collection of open sets, in terms of
which continuous functions can be defined. Second, the structure of these open
sets must be similar, within small regions, to the natural topology of R4 . To this
end, we demand that every point of the space belong to at least one open set,
all of whose points can be put into a one-to one correspondence with the points
of some open set of R4 . More technically, the correspondence is a one-to-one
mapping of the open set of the space onto the open set of R4 , which is to say
that every point of the open set in the space has a unique image point in the open
set of R4 and vice versa. We further demand that this mapping be continuous,
according to our previous definition. When these conditions are met, the space is
called a manifold. The existence of continuous mappings between the manifold
and R4 implies that a function f defined on the manifold (that is, one that has a
value f (P) for each point P of the manifold) can be re-expressed as a function g
defined on R4 , so that f (P) = g(x0, . . . , x3), where (x0, . . . , x3) is the point of
R4 corresponding to P . In this way, continuous functions defined on the manifold
inherit the characteristics of those defined on R4 .

This definition amounts to saying that the manifold can be covered by
patches, in each of which a four-dimensional coordinate system can be set up,
as illustrated in figure 2.5 for the more easily drawn case of a two-dimensional
manifold. Normally, of course, many different coordinate systems can be set up
on any part of the manifold. The definition also ensures that, within the range
of coordinate values corresponding to a given patch, there exists a point of the
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Figure 2.5. A coordinate patch on a two-dimensional manifold. Each point in the patch is
mapped to a unique image point in a region of R2 and vice versa.

Figure 2.6. Two overlapping coordinate patches. A point in the overlap region can be
identified using either set of coordinates.

manifold for each set of coordinate values—so there are no points ‘missing’ from
the manifold, and also that there are no ‘extra’ points that cannot be assigned
coordinates. Within a coordinate patch, a quantity such as an electric potential,
which has a value at each point of the manifold, can be expressed as an ordinary
function of the coordinates of the point. Often, we shall expect such functions to
be differentiable (that is, to possess unique partial derivatives with respect to each
coordinate at each point of the patch).

Suppose we have two patches, each with its own coordinate system, that
partly or wholly overlap, as in figure 2.6. Each point in the overlap region has
two sets of coordinates, say (x0, . . . , x3) and (y0, . . . , y3), and the y coordinates
can be expressed as functions of the x coordinates: y0 = y0(x0, . . . , x3), etc.
Given ‘reasonable’ coordinate systems, we might suppose that a function which
is differentiable when expressed in terms of the xµ ought also to be differentiable
when expressed in terms of the yµ. This will indeed be true if the transformation
functions yµ(x) are differentiable. If the manifold can be completely covered by a
set of coordinate patches, in such a way that all of these transformation functions
are differentiable, then we have a differentiable manifold. In order for a function
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Figure 2.7. (a) A manifold M , part of the surface of this page, with a coordinate patch.
(b) Part of R2, showing the coordinate values used in (a).

to remain differentiable at least n times after a change of coordinates, at least the
first n derivatives of all the transformation functions must exist. If they do, then
we have what is called a Cn manifold. Intuitively, we might think it possible to
define functions of space and time that can be differentiated any number of times,
for which we would need n = ∞. We shall indeed take a C∞ manifold as the
basis for our model spacetime. Mathematically, though, this is a rather strong
assumption, and for many physical purposes it would be sufficient to take, say,
n = 4.

2.1.3 Summary and examples

Our starting point for a model of space and time is a C∞ manifold. The essence of
the technical definition described above is, first, that it is possible to set up a local
coordinate system covering any sufficiently ‘small’ region and, second, that it is
possible to define functions on the manifold that are continuous and differentiable
in the usual sense. It is, of course, perfectly possible to define functions that are
neither continuous nor differentiable. The point is that, if a function fails to be
continuous or differentiable, this will be the fault either of the function itself or
of our choice of coordinates, but not the fault of the manifold. The word ‘small’
appears in inverted commas because, as I have emphasized, there is as yet no
definite notion of length: it simply means that it may well not be possible to
cover the entire manifold with a single coordinate system. The coordinate systems
themselves are not part of the structure of the manifold. They serve merely as an
aid to thought, providing a practical means of specifying properties of sets of
points belonging to the manifold.
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Figure 2.8. Same as figure 2.7, but using different coordinates.

The following examples illustrate, in terms of two-dimensional manifolds,
some of the important ideas. Figure 2.7(a) shows a manifold, M , which is part
of the surface of the paper on which it is printed. For the sake of argument, I
am asking readers to suppose that this surface is perfectly smooth, rather than
being composed of tiny fibres. For the definitions to work, we must take the
manifold to be the interior of the rectangular region, excluding points on the
boundary. The interior of the roughly circular region is a coordinate patch. Inside
it are drawn some of the grid lines by means of which we assign coordinates x1

and x2 to each point. Figure 2.7(b) is a pictorial representation of part of the
space R2 of pairs of coordinates. The interior of the shaded region represents
the coordinates actually used. To every point of this region there corresponds a
point of the coordinate patch in M and vice versa. Figure 2.8 shows a similar
arrangement, using a different coordinate system. Here, again, the interior of the
shaded region of R2 represents the open set of points that correspond uniquely
to points of the coordinate patch. As before, the boundary of the coordinate
patch and the corresponding line x1 = 4 in R2 are excluded. Also excluded,
however, are the boundary lines x1 = 0, x2 = 0 and x2 = 2π in R2 , which
means that points on the line labelled by x2 = 0 in M do not, in fact, belong to
the coordinate patch. Since the coordinate system is obviously usable, even when
these points are included, their exclusion may seem like an annoying piece of
bureaucracy: however, it is essential to apply the rules correctly if the definitions
of continuity and differentiability are to work smoothly. For example, the function
g(x1, x2) = x2 is continuous throughout R2 , but the corresponding function on
M is discontinuous at x2 = 0.

It should be clear that, whereas a single coordinate patch like that in
figure 2.7 can be extended to cover the whole of M , at least two patches of
the kind shown in figure 2.8 would be needed. Readers should also be able to
convince themselves that, if M were the two-dimensional surface of a sphere,
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no single patch of any kind could cover all of it. These examples also illustrate
the fact that, although the coordinates which label the points of M have definite
numerical values, these values do not, in themselves, supply any notion of a
distance between two points. The distance along some curve in M may be defined
by some suitable rule, such as (i) ‘use a ruler’ or (ii) ‘measure the volume of
ink used by a standard pen to trace the curve’ or, given a particular coordinate
system, (iii) ‘use the mathematical expression D = (function of coordinates)’.
Any such rule imposes an additional structure—called a metric—which is not
inherent in the manifold. In particular, there is no naturally occurring function
for use in (iii). Any specific function, such as the Pythagoras expression, would
have quite different effects when applied to different coordinate systems, and the
definition of the manifold certainly does not single out a special coordinate system
to which that function would apply. We do have a more or less unambiguous
means of determining distances on a sheet of paper, and this is because the paper,
in addition to the topological properties it possesses as a manifold, has physical
properties that enable us to apply a definite measuring procedure. The same is
true of space and time and, although we have made some initial assumptions
about their topological structure, we have yet to find out what physical properties
determine their metrical structure.

2.2 Tensors

From our discussion so far, it is apparent that coordinate systems can be
dangerous, even though they are often indispensable for giving concrete
descriptions of a physical system. We have seen that the topology of a manifold
such as that of space and time may permit the use of a particular coordinate system
only within a small patch. Suppose, for the sake of argument, that the surface
of the Earth is a smooth sphere. We encounter no difficulty in drawing, say,
the street plan of a city on a flat sheet of paper using Cartesian coordinates, but
we should obviously be misled if we assumed that this map could be extended
straightforwardly to cover the whole globe. By assuming that two-dimensional
Euclidean geometry was valid on the surface of the Earth, we should be making a
mistake, owing to the curvature of the spherical surface, but the mistake would not
become apparent as long as we made measurements only within a region the size
of a city. Likewise, physicists before Einstein assumed that a frame of reference
fixed on the Earth would be inertial, except for effects of the known orbital motion
of the Earth around the Sun and its rotation about its own axis, which could be
corrected for if necessary. According to Einstein, however, this assumption is also
mistaken. It fails to take account of the true geometry of space and time in much
the same way that, by treating a city plan as a Euclidean plane, we fail to take
account of the true geometry of the Earth. The mistake only becomes apparent,
however, when we make precise observations of gravitational phenomena.

The difficulty here is that we often express the laws of physics in the form
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which, we believe, applies to inertial frames. If we do not know, a priori, what the
true geometry of space and time is, then we do not know whether any given frame
is truly inertial. Therefore, we need to express our laws in a way that does not rely
on our making any special assumption about the coordinate system. There are two
ways of achieving this. The method adopted by Einstein himself is to write our
equations in a form that applies to any coordinate system: the mathematical tech-
niques for doing this constitute what is called tensor analysis. The other, more
recent method is to write them in a manner that makes no reference to coordi-
nate systems at all: this requires the techniques of differential geometry. For our
purposes, these two approaches are entirely equivalent, but each has its own ad-
vantages and disadvantages in terms of conceptual and notational clarity. So far
as I can, I will follow a middle course, which seems to me to maximize the ad-
vantages. Both techniques deal with objects called tensors. Tensor analysis, like
elementary vector analysis, treats them as being defined by sets of components,
referred to particular coordinate systems. Differential geometry treats them as
entities in their own right, which may be described in terms of components, but
need not be. When components are used, the two techniques become identical, so
there is no difficulty in changing from one description to the other.

Many, though not all, of the physical objects that inhabit the spacetime
manifold will be described by tensors. A tensor at a point P of the manifold
refers only to that point. A tensor field assigns some property to every point
of the manifold, and most physical quantities will be described by tensor fields.
(For brevity, I shall often follow custom by referring to a tensor field simply as
a ‘tensor’, when the meaning is obvious from the context.) Tensors and tensor
fields are classified by their rank, a pair of numbers

(a
b

)
.

Rank
(0

0

)
tensors, also called scalars, are simply real numbers. A scalar

field is a real-valued function, say f (P), which assigns a real number to each
point of the manifold. If our manifold were just the three-dimensional space
encountered in Newtonian physics, then at a particular instant in time, an electric
potential V (P) or the density of a fluid ρ(P) would be examples of scalar fields.
In relativistic physics, these and all other simple examples I can think of are
not true scalars, because their definitions depend in one way or another on the
use of specific coordinate systems or on metrical properties of the space that our
manifold does not yet possess. For the time being, however, no great harm will
be done if readers bear these examples in mind. If we introduce coordinates xµ,
then we can express f (P) as an algebraic function f (xµ). (For convenience, I am
using the same symbol f to denote two different, though related functions: we
have f (xµ) = f (P) when xµ are the coordinates of the point P .) In a different
coordinate system, where P has the coordinates xµ′

, the same quantity will be
described by a new algebraic function f ′(xµ′

), related to the old one by

f ′(xµ′
) = f (xµ) = f (P). (2.9)

In tensor analysis, this transformation law is taken to define what is meant by
a scalar field.
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Rank
(1

0

)
tensors are called vectors in differential geometry. They correspond

to what are called contravariant vectors in tensor analysis. The prototypical
vector is the tangent vector to a curve. In ordinary Euclidean geometry, the
equation of a curve may be expressed parametrically by giving three functions
x(λ), y(λ) and z(λ), so that each point of the curve is labelled by a value of λ

and the functions give its coordinates. If λ is chosen to be the distance along
the curve from a given starting point, then the tangent vector to the curve at the
point labelled by λ has components (dx/dλ, dy/dλ, dz/dλ). In our manifold,
we have not yet given any meaning to ‘distance along the curve’, and we want
to avoid defining vectors in terms of their components relative to a specific
coordinate system. Differential geometry provides the following indirect method
of generalizing the notion of a vector to any manifold. Consider, in Euclidean
space, a differentiable function f (x, y, z). This function has, in particular, a value
f (λ) at each point of the curve, which we obtain by substituting for x , y and z the
appropriate functions of λ. The rate of change of f with respect to λ is

d f

dλ
= dx

dλ

∂ f

∂x
+ dy

dλ

∂ f

∂y
+ dz

dλ

∂ f

∂z
(2.10)

so, by choosing f = x , f = y or f = z, we can recover from this expression each
component of the tangent vector. All the information about the tangent vector
is contained in the differential operator d/dλ, and in differential geometry this
operator is defined to be the tangent vector.

A little care is required when applying this definition to our manifold.
We can certainly draw a continuous curve on the manifold and label its points
continuously by a parameter λ. What we cannot yet do is select a special
parameter that measures distance along it. Clearly, by choosing different
parametrizations of the curve, we shall arrive at different definitions of its tangent
vectors. It is convenient to refer to the one-dimensional set of points in the
manifold as a path. Then each path may be parametrized in many different ways,
and we regard each parametrization as a distinct curve. This has the advantage
that each curve, with its parameter λ, has a unique tangent vector d/dλ at every
point. Suppose we have two curves, corresponding to the same path, but with
parameters λ and µ that are related by µ = aλ + b, a and b being constants. The
difference is obviously a rather trivial one and the two parameters are said to be
affinely related.

If we now introduce a coordinate system, we can resolve a vector into
components, in much the same way as in Euclidean geometry. At this point,
it is useful to introduce two abbreviations into our notation. First, we use the
symbol ∂µ to denote the partial derivative ∂/∂xµ. Second, we shall use the
summation convention, according to which, if an index such as µ appears in
an expression twice, once in the upper position and once in the lower position,
then a sum over the values µ = 0 . . . 3 is implied. (More generally, in a d-
dimensional manifold, the sum is over the values 0 . . . (d − 1). In contexts other
than spacetime geometry, there may be no useful distinction between upper and
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lower indices, and repeated indices implying a sum may both appear in the same
position.) I shall use bold capital letters to denote vectors, such as V = d/dλ.
If, then, a curve is represented in a particular coordinate system by the functions
xµ(λ), we can write

V ≡ d

dλ
=

3∑
µ=0

dxµ

dλ

∂

∂xµ
≡ V µ∂µ ≡ V µXµ (2.11)

where the partial derivatives Xµ = ∂/∂xµ are identified as the basis vectors in this
system and V µ are the corresponding components of V . Note that components
of a vector are labelled by upper indices and basis vectors by lower ones. In a
new coordinate system, with coordinates xµ′

, and basis vectors Xµ′ = ∂/∂xµ′
,

the chain rule ∂µ = (∂xµ′
/∂xµ)∂µ′ shows that the same vector has components

V µ′ = ∂xµ′

∂xµ
V µ. (2.12)

In tensor analysis, a contravariant vector is defined by specifying its components
in some chosen coordinate system and requiring its components in any other
system to be those given by the transformation law (2.12). It will be convenient
to denote the transformation matrix by

�µ′
µ = ∂xµ′

∂xµ
. (2.13)

The convention of placing a prime on the index µ′ to indicate that xµ and xµ′

belong to different coordinate systems, rather than writing, say, x ′µ, is useful here
in indicating to which system each index on � refers. Using the chain rule again,
we find

�
µ

ν ′�ν ′
σ = ∂xµ

∂xν ′
∂xν ′

∂xσ
= ∂xµ

∂xσ
= δµσ (2.14)

so the matrix �
µ

ν ′ is the inverse of the matrix �ν ′
µ.

Rank
(0

1

)
tensors are called one-forms in differential geometry or covariant

vectors in tensor analysis. Consider the scalar product u · v of two Euclidean
vectors. Normally, we regard this product as a rule that combines two vectors
u and v to produce a real number. As we shall see, this scalar product involves
metrical properties of Euclidean space that our manifold does not yet possess.
There is, however, a different point of view that can be transferred to manifold.
For a given vector u, the symbol u· can be regarded as defining a function,
whose argument is a vector, say v, and whose value is the real number u · v.
The function u· is linear. That is to say, if we give it the argument av + bw,
where v and w are any two vectors, and a and b are any two real numbers, then
u · (av + bw) = au · v + bu ·w. This is, in fact, the definition of a one-form. In
our manifold, a one-form, say ω, is a real-valued, linear function whose argument
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is a vector: ω(V ) = (real number). Because the one-form is a linear function, its
value must be a linear combination of the components of the vector:

ω(V ) = ωµV µ. (2.15)

The coefficients ωµ are the components of the one-form, relative to the coordinate
system in which V has components V µ. A one-form field is defined in the same
way as a linear function of vector fields, whose value is a scalar field. In the
definition of linearity, a and b may be any two scalar fields.

The expression (2.15) is, of course, similar to the rule for calculating the
scalar product of two Euclidean vectors from their components. Nevertheless, it
is clear from their definitions that vectors and one-forms are quite different things,
and (2.15) does not allow us to form a scalar product of two vectors.

An example of a one-form field is the gradient of a scalar field f , whose
components are ∂µ f . Notice the consistency of the convention for placing
indices: the components of a one-form have indices that naturally appear in the
lower position. Call this gradient one-form ω f . If V = d/dλ is the tangent vector
to a curve xµ(λ), then the new scalar field ω f (V ) is the rate of change of f along
the curve:

ω f (V ) = ∂ f

∂xµ

dxµ

dλ
= d f

dλ
. (2.16)

Since vectors and one-forms exist independently of any coordinate system,
the function ω(V ) given in (2.15) must be a true scalar field—it must have
the same value in any coordinate system. This means that the matrix which
transforms the components of a one-form between two coordinate systems must
be the inverse of that which transforms the components of a vector:

ωµ′ = ωµ�
µ

µ′ = ωµ

∂xµ

∂xµ′ . (2.17)

Then, on transforming (2.15), we get

ω(V ) = ωµ′ V µ′ = ωµ�
µ

µ′�µ′
νV ν = ωµδ

µ
νV ν = ωµV µ. (2.18)

In tensor analysis, a covariant vector is defined by requiring that its components
obey the transformation law (2.17). Clearly, this is indeed the correct way of
transforming a gradient.

Rank
(a

b

)
tensors and tensor fields can be defined in a coordinate-independent

way, making use of the foregoing definitions of vectors and one-forms, and I
shall say more about this in §3.7. For our present purposes, however, it becomes
rather easier at this point to adopt the tensor analysis approach of defining higher-
rank tensors in terms of their components. A tensor of contravariant rank a and
covariant rank b has, in a d-dimensional manifold, da+b components, labelled by
a upper indices and b lower ones. The tensor may be specified by giving all of
its components relative to some chosen coordinate system. In any other system,
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the components are then given by a transformation law that generalizes those for
vectors and one-forms in an obvious way:

T α′β ′...
µ′ν ′... = �α′

α�
β ′
β · · ·�µ

µ′�ν
ν ′ · · · T αβ...

µν.... (2.19)

From this we can see how to construct laws of physics in a way that will make
them true in any coordinate system. Suppose that a fact about some physical
system is expressed in the form S = T , where S and T are tensors of the same
rank. On multiplying this equation on both sides by the appropriate product of �
matrices, we obtain the equation S′ = T ′, which expresses the same fact, in an
equation of the same form, but now applies to the new coordinate system. The
point that may require some effort is to make sure that S and T really are tensors
that transform in the appropriate way.

If ω is a one-form and V a vector, then the d2 quantities T ν
µ = ωµV ν are

the components of a rank
(1

1

)
tensor. As we saw in (2.15), by setting µ = ν and

carrying out the implied sum, we obtain a single number, which is a scalar (or a
rank

(0
0

)
tensor). This process is called contraction. Given any tensor of rank

(a
b

)
,

with a ≥ 1 and b ≥ 1, we may contract an upper index with a lower one to obtain
a new tensor of rank

(a−1
b−1

)
. Readers should find it an easy matter to check from

(2.19) that, for example, the object Sαγ ...
ν... = T αβγ ...

βν... does indeed transform
in the right way.

2.3 Extra Geometrical Structures

Two geometrical structures are needed to endow our manifold with the familiar
properties of space and time: (i) the notion of parallelism is represented
mathematically by an affine connection; (ii) the notions of length and angle are
represented by a metric. In principle, these two structures are quite independent.
In Euclidean geometry, of course, it is perfectly possible to define what we mean
by parallel lines in terms of distances and angles, and this is also true of the
structures that are most commonly used in general-relativistic geometry. Thus
there is, as we shall see, a special kind of affine connection that can be deduced
from a metric. It is called a metric connection (or sometimes, the Levi-Civita
connection). We shall eventually assume that the actual geometry of space and
time is indeed described by a metric connection. From a theoretical point of view,
however, it is instructive to understand the distinction between those geometrical
ideas that rely only on an affine connection and those that require a metric.
Moreover, there are manifolds other than spacetime that play important roles in
physics (in particular, those connected with the gauge theories of particle physics),
which possess connections, but do not necessarily possess metrics. To emphasize
this point, therefore, I shall deal first with the affine connection, then with the
metric, and finally with the metric connection.
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Figure 2.9. (a) A geodesic curve: successive tangent vectors are parallel to each other. (b)
A non-geodesic curve: successive tangent vectors are not parallel.

2.3.1 The affine connection

There are four important geometrical tools provided by an affine connection: the
notion of parallelism, the notion of curvature, the covariant derivative and the
geodesic. Let us first understand what it is good for.

a) Newton’s first law of motion claims that ‘a body moves at constant speed
in a straight line unless it is acted on by a force’. In general relativity, we shall
replace this with the assertion that ‘a test particle follows a geodesic curve unless
it is acted on by a non-gravitational force’. As we saw earlier, gravitational
forces are going to be interpreted in terms of spacetime geometry, which itself is
modified by the presence of gravitating bodies. By a ‘test particle’, we mean one
that responds to this geometry, but does not modify it significantly. A geodesic is
a generalization of the straight line of Euclidean geometry. It is defined, roughly,
as a curve whose tangent vectors at successive points are parallel, as illustrated in
figure 2.9. Given a definition of ‘parallel’, as provided by the connection, this is
perhaps intuitively recognizable as the natural state of motion for a particle that is
not disturbed by external influences.

b) The equations of physics, which we wish to express entirely in terms
of tensors, frequently involve the derivatives of vector or tensor fields. Now,
the derivatives of a scalar field ∂µ f are, as we have seen, the components of a
one-form field. However, the derivatives of the components of a vector field,
∂µV ν , are not the components of a tensor field, even though they are labelled by
a contravariant and a covariant index. On transforming these derivatives to a new
coordinate system, we find

∂µ′ V ν ′ = �
µ

µ′∂µ(�
ν ′
νV ν)

= �
µ

µ′�ν ′
ν∂µV ν + �

µ

µ′(∂µ�ν ′
ν)V

ν . (2.20)

Because of the last term, this does not agree with the transformation law for
a second-rank tensor. The affine connection will enable us to define what is
called a covariant derivative, ∇µ, whose action on a vector field is of the form
∇µV ν = ∂µV ν + (connection term). The transformation of the extra term
involving the affine connection will serve to cancel the unwanted part in (2.20),
so that ∇µV ν will be a tensor.

c) The fact that the functions ∂µV ν do not transform as the components of a
tensor indicates that they have no coordinate-independent meaning. To see what
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Figure 2.10. V (P) and V (Q) are the vectors at P and Q belonging to the vector field V .
V (P → Q) is the vector at Q which results from parallelly transporting V (P) along the
curve.

goes wrong, consider the derivative of a component of a vector field along a
curve, as illustrated in figure 2.10(a), where P and Q are points on the curve
with parameters λ and λ + δλ respectively. The derivative at P is

dV µ

dλ
= dxν

dλ

∂V µ

∂xν
= lim

δλ→0

V µ(Q) − V µ(P)

δλ
. (2.21)

For a scalar field, which has unique values at P and Q, such a derivative makes
good sense. However, the values at P and Q of the components of a vector
field depend on the coordinate system to which they are referred. It is easy to
make a change of coordinates such that, for example, V µ(Q) is changed while
V µ(P) is not, and so the difference of these two quantities has no coordinate-
independent meaning. If we try to find the derivative of the vector field itself,
we shall encounter the expression V (Q) − V (P). Now, V (P) is the tangent
vector to some curve passing through P (though not necessarily the one shown in
figure 2.10(a)) and V (Q) is the tangent vector to some curve passing through Q.
The difference of two vectors at P is another vector at P: each vector is tangent
to some curve passing through P . However, V (Q) − V (P) is not, in general, the
tangent vector to a curve at a specific point. It is not, therefore, a vector and has,
indeed, no obvious significance at all.

To define a meaningful derivative of a vector field, we need to compare
two vectors at the same point, say Q. Therefore, we construct a new vector
V (P → Q), which exists at Q but represents V (P). Then a new vector, DV/dλ,
which will be regarded as the derivative of V along the curve, may be defined as

DV
dλ

∣∣∣∣
P

= lim
δλ→0

V (Q) − V (P → Q)

δλ
. (2.22)

In the limit, of course, Q coincides with P and this is where the new vector
exists. There is no natural way in which a vector at Q corresponds to a vector at
P , so we must provide a rule to define V (P → Q) in terms of V (P). This
rule is the affine connection. In figure 2.10(b), V (P → Q) is shown as a
vector at Q that is parallel to V (P). The figure looks this way because of the
Euclidean properties of the paper on which it is printed. Mathematically, the affine
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Figure 2.11. Parallel transport of a vector from P to Q on a spherical surface by two
routes.

connection defines what it means for a vector at Q to be parallel to one at P: it is
said to define parallel transport of a vector along the curve. From a mathematical
point of view, we are free to specify the affine connection in any way we choose.
Physically, on the other hand, we shall need to find out what the affine connection
is, with which nature has actually provided us, and we shall address this problem
in due course. It might be thought that a vector which represents V (P) should
not only be parallel to it but also have the same length. In Euclidean geometry,
the magnitude of a vector is (v · v)1/2 and, as we have seen, the scalar product
needs a metric for its definition. The metric connection, mentioned above, does
indeed define parallel transport in a manner that preserves the magnitude of the
transported vector.

The concrete definition of parallel transport is most clearly written down by
choosing a coordinate system. If P and Q lie on a curve xµ(λ) and are separated
by an infinitesimal parameter distance δλ, then the components of V (P → Q)

are defined by

V µ(P → Q) = V µ(P) − δλ�µ
νσ (P)V ν(P)

dxσ

dλ
(2.23)

and the functions �
µ
νσ are called the affine connection coefficients. These

coefficients exist at each point of the manifold and are not associated with any
particular curve. However, the rule (2.23) for parallel transport involves, in
addition to the vector V itself, both the connection coefficients and the tangent
vector dxσ /dλ, so parallel transport is defined only along a curve. To transport
V along a curve by a finite parameter distance, we have to integrate (2.23). If
we wish to transport a vector from an initial point P to a final point Q, we must
choose a curve, passing through both P and Q, along which to transport it. There
will usually be many such curves and it is vital to realize that the vector which
finally arrives at Q depends on the route taken: the functions �

µ
νσ will generally

not take the same values along two different curves. This fact lies at the root of
the idea of the curvature of a manifold, as we shall see shortly.



32 Geometry

The idea of parallel transport is illustrated in figure 2.11, which shows the
surface of a Euclidean sphere. For the purposes of this example, we assume the
usual metrical properties of Euclidean space, so that distances and angles have
their usual meanings. The manifold we consider is the two-dimensional surface of
the sphere, so every vector is tangential to this surface. P and Q are points on the
equator, separated by a quarter of its circumference, and N is the north pole. The
equator and the curves P N and QN are parts of great circles on the sphere and
are ‘straight lines’ as far as geometry on the spherical surface is concerned: one
would follow such a path by walking straight ahead on the surface of a perfectly
smooth Earth. Consider a vector V (P) that points due north—it is a tangent
vector at P to the curve P N . We shall transport this vector to Q, first along the
equator and second via the north pole. The rule for parallel transport of a vector
along a straight line is particularly simple: the angle between the vector and the
line remains constant. For transport along the equator, the vector clearly points
north at each step and so V (P → Q) also points north along QN . Along P N ,
the vector also points north, so on arrival at the pole it is perpendicular to QN .
On its way south, it stays perpendicular to QN . Thus, the transported vector
V (P → Q) as defined by the polar route points along the equator.

At this point, readers should consider parallel transport along the sides
of a plane equilateral triangle P N Q. It is easy to see that V (P → Q) is
independent of the route taken. Clearly, the difference between the two cases
is that the spherical surface is curved while the plane surface is flat. The rule for
parallel transport, embodied mathematically in the affine connection coefficients,
evidently provides a measure of the curvature of a manifold, and we shall later
formulate this precisely. It should be emphasized that a manifold possesses a
curvature only when it has an affine connection. If it has no connection, then it
is neither curved nor flat: the question just does not arise. Finally, returning to
figure 2.11, suppose that we had chosen Q to lie close to P and considered only
paths contained in a small neighbourhood of the two points. The surface would
have been almost indistinguishable from a flat one and the transported vector
would have been almost independent of the path. This is consistent with the
mathematical expression (2.23). If P has coordinates xµ and Q is infinitesimally
close to P , with coordinates xµ+dxµ, then we may substitute dxµ for δλdxµ/dλ,
and all reference to the path between P and Q disappears. The affine connection
of two-dimensional Euclidean geometry is explored in exercise 2.10.

One of our motivations for introducing the affine connection was to be able
to define a meaningful derivative of a vector field. The covariant derivative
along a curve was to be defined, using the idea of parallel transport, by (2.22).
As we have just seen, it is not actually necessary to specify a curve when P
and Q are infinitesimally close. In terms of components, then, let us write
DV µ/dλ = (dxσ /dλ)∇σ V µ and calculate the covariant derivative ∇σ V µ using
(2.22) and (2.23). We find

∇σ V µ = ∂σ V µ + �µ
νσ V ν . (2.24)



Extra Geometrical Structures 33

Notice that the three indices of the connection coefficient have different functions.
There are, indeed, important situations in which the connection is symmetric in
its two lower indices: �

µ
νσ = �

µ
σν . In general, however, it is the last index that

corresponds to that of ∇σ . Since DV µ/dλ and dxσ /dλ are both vectors, it follows
from their transformation laws that the functions ∇σ V µ are the components of a
rank

(1
1

)
tensor, with the transformation law

∇σ ′ V µ′ = �σ
σ ′�µ′

µ∇σ V µ. (2.25)

From this, we can deduce the transformation law for the connection coefficients
themselves, which can be written as

�
µ′
ν ′σ ′ =

(
�µ′

µ�
ν
ν ′�σ

σ ′
)
�µ

νσ + �µ′
ν

(
∂σ ′�ν

ν ′
)
. (2.26)

Readers are urged to verify this in detail, bearing in mind that ∂σ ′(�µ′
ν�

ν
ν ′) =

(∂σ ′�µ′
ν)�

ν
ν ′ + �

µ′
ν(∂σ ′�ν

ν ′) = ∂σ ′(δµ
′

ν ′ ) = 0.
Evidently, the affine connection is not itself a tensor. However, the covariant

derivative that contains it acts on any tensor to produce another tensor of one
higher covariant rank. So far, we have defined only the covariant derivative of a
vector field, which was given in (2.24). The covariant derivative of a scalar field
is just the partial derivative, ∇µ f = ∂µ f , since this is already a vector field. In
order for the covariant derivative of a one-form field to be a second-rank tensor
field, we must have

∇σωµ = ∂σωµ − �ν
µσων . (2.27)

Notice that the roles of the upper and first lower indices have been reversed,
compared with (2.24), and that the sign of the connection term has changed.
It is straightforward to check that these changes are vital if this derivative is to
transform as a rank

(0
2

)
tensor field. The covariant derivative of a tensor field of

arbitrary rank is

∇σ T αβ...
µν... = ∂σ T αβ...

µν... + (connection terms). (2.28)

There is one connection term for each index of the original tensor. For each upper
index, it is a term like that in (2.24) and for each lower index it is like that in (2.27).
Exercise 2.11 invites readers to consider in more detail how these definitions are
arrived at.

There is a convenient notation that represents partial derivatives of tensor
fields by a comma and covariant derivatives by a semicolon. That is:

∂σ T α
µν ≡ T α

µν,σ and ∇σ T α
µν ≡ T α

µν;σ . (2.29)

2.3.2 Geodesics

As mentioned earlier, a geodesic is, in a sense, a generalization of the straight
line of Euclidean geometry. Of course, we can reproduce only those properties
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of straight lines that make sense in our manifold with its affine connection. For
example, the idea that a straight line is the shortest distance between two points
will make sense only when we have a metric to measure distances. The idea of
a geodesic is that, if we are to walk along a straight line, each step we take must
be parallel to the last. Consider, then, the special case of the parallel transport
equation (2.23) in which the vector transported from P to Q is the curve’s own
tangent vector at P: V µ = dxµ/dλ. If the curve is a geodesic, the transported
vector V (P → Q) will be proportional to V (Q). Since the vectors have no
definite length, the constant of proportionality may well depend on λ, but if
P and Q are separated by an infinitesimal parameter distance, it will be only
infinitesimally different from 1. So we may write

dxµ

dλ

∣∣∣∣
P→Q

= [1 − f (λ)δλ] dxµ

dλ

∣∣∣∣
Q

(2.30)

where f (λ) is an unknown function. Using this in (2.23) and taking the limit
δλ → 0, we obtain the geodesic equation

d2xµ

dλ2 + �µ
νσ

dxν

dλ

dxσ

dλ
= f (λ)

dxµ

dλ
. (2.31)

A curve xµ(λ) is a geodesic if and only if it satisfies an equation of this form,
where f (λ) can be any function.

Remember now that a given path through the manifold can be parametrized
in many different ways, each one being regarded as a different curve. It is easy
to see that if the curve given by one parametrization is a geodesic, then so is the
curve that results from another parametrization of the same path. We need only
express the new parameter, say µ, as a function of λ and use the chain rule in
(2.31):

d2xµ

dµ2 + �µ
νσ

dxν

dµ

dxσ

dµ
=
(

dµ

dλ

)−2
[

f (λ)
dµ

dλ
− d2µ

dλ2

]
dxµ

dµ
. (2.32)

This has the same form as (2.31) but involves a different function of µ on the right-
hand side. In particular, it is always possible to find a parameter for which the
right-hand side of (2.32) vanishes. Such a parameter is called an affine parameter
for the path. It is left as a simple exercise for the reader to show that if λ is an
affine parameter, then any parameter that is affinely related to it (that is, it is a
linear function µ = aλ + b) is also an affine parameter.

2.3.3 The Riemann curvature tensor

We saw in connection with figure 2.11 that parallel transport of a vector between
two points along different curves can be used to detect curvature of the manifold.
This is because both parallel transport and curvature are properties of the affine
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Figure 2.12. Two paths, P RQ and P SQ, for parallelly transporting a vector from P to Q.

connection. The definition of curvature is made precise by the Riemann curvature
tensor. Consider two points P and Q with coordinates xµ and xµ + δxµ

respectively, such that δxµ = 0, except for µ = 1 or 2. A region of the (x1, x2)

surface near these points is shown in figure 2.12. By transporting a vector V (P)

to Q via R or S, we obtain at Q the two vectors V (P → R → Q) and
V (P → S → Q). To first order in δxµ these two vectors are the same, as
we have seen. If we expand them to second order, however, they are different,
and we obtain an expression of the form

V µ(P → S → Q) − V µ(P → R → Q) = Rµ

ν12V νδx1δx2 + . . . (2.33)

where the quantities Rµ
ν12 depend on the connection coefficients and their

derivatives. Readers are invited to verify that they are components of the Riemann
tensor we are about to define.

It should be clear that the process of transporting the vector from P to Q
along the two paths is related to that of taking two derivatives, with respect to x1

and x2, in either order. If we act on a vector field with the two covariant derivatives
∇σ and ∇τ in succession, the result depends on the order of the two operations;
they do not commute. To work out the commutator, we use the definition (2.28),
bearing in mind that ∇σ V µ is itself a rank

(1
1

)
tensor. The result is

[∇σ ,∇τ ] V µ ≡ ∇σ

(∇τ V µ
)− ∇τ

(∇σ V µ
) = Rµ

νστ V ν + (
�λ

στ − �λ
τσ

)∇λV µ

(2.34)
where

Rµ
νστ = �µ

ντ,σ − �µ
νσ,τ + �

µ
λσ�

λ
ντ − �

µ
λτ�

λ
νσ . (2.35)

This formidable expression defines the Riemann tensor. As a rank-4 tensor, it has
44 = 256 components! Actually, owing to various symmetry properties, of which
the most obvious is antisymmetry in the indices σ and τ , it can be shown that
only 80 of these are independent. When �

µ
νσ is a metric connection of the kind
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to be described in §2.3.5, there is a further symmetry that reduces the number
of independent components to 20. Even so, the Riemann tensor is clearly an
inconvenient object to deal with. Readers should not panic yet, though. Many
of the most important applications of general relativity (including all those to be
discussed in this book) do not require the complete Riemann tensor. In practice,
we shall need only a simpler tensor derived from it. This is the Ricci tensor,
defined by contracting two indices of the Riemann tensor:

Rµν ≡ Rλ
µλν = �λ

µν,λ − �λ
µλ,ν + �λ

σλ�
σ
µν − �λ

σν�
σ
µλ. (2.36)

Although the definition still looks complicated, the components of this tensor can
often be calculated with just a little patience, and it is relatively simple to use
thereafter.

The second term on the right-hand side of (2.34) involves the antisymmetric
part of the affine connection, �ν

στ − �ν
τσ , which is called the torsion tensor.

(Readers should find it instructive to verify, using (2.26) and (2.13) that this really
is a tensor, even though �ν

στ itself is not.) In most versions of general relativity, it
is assumed that spacetime has no torsion. We shall always assume this too, since
it makes things much simpler. I do not know, however, of any direct method of
testing this experimentally.

Some simple illustrations of the idea of curvature are given in the exercises.
These make more obvious sense when we have a metric at our disposal, and we
turn to that topic forthwith.

2.3.4 The metric

Yes, we are finally going to give our manifold a metrical structure that will make
the notion of length meaningful. To define the infinitesimal distance ds between
two points with coordinates xµ and xµ + dxµ, we use a generalization of the
Pythagoras rule:

ds2 = gµν(x)dxµdxν. (2.37)

Naturally, we want this distance to be a scalar quantity, independent of our choice
of coordinate system, and it is easy to see that the coefficients gµν(x) must
therefore be the components of a rank

(0
2

)
tensor field. It is called the metric

tensor field or, for brevity, the ‘metric tensor’, or simply the ‘metric’. Since an
antisymmetric part would obviously make no contribution to ds, it is taken to be
symmetric in its indices µ and ν. Any finite distance between two points can be
uniquely defined only as the length of a specified curve joining them. For the
distance between P and Q on a curve xµ(λ), we have the integral

sP Q =
∫ Q

P

ds

dλ
dλ =

∫ Q

P

[
gµν

(
x(λ)

) dxµ

dλ

dxν

dλ

]1/2

dλ. (2.38)

In the space of three-dimensional Euclidean geometry, the squared element of
distance expressed in Cartesian coordinates is ds2 = (dx1)2 + (dx2)2 + (dx3)2,
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so the components of the metric tensor in these coordinates are

gµν =
( 1 0 0

0 1 0
0 0 1

)
. (2.39)

The metric tensor has several other geometrical uses, arising from the fact
that it serves to define a scalar product of two vectors or vector fields:

U · V = Uµ(x)gµν(x)V
ν(x). (2.40)

Clearly, this reduces to the usual ‘dot product’ in Euclidean space. Taking the two
vectors to be the same, we get a definition of the magnitude or length of a vector,

|V (x)|2 = gµν(x)V
µ(x)V ν(x) (2.41)

and we can then define the angle between two vectors by writing

gµνUµV ν = |U||V | cos θ. (2.42)

A non-Euclidean metric does not necessarily give a positive value for the quantity
|V (x)|2, so the lengths and angles defined in this way might turn out to be
complex.

When introducing one-forms, I pointed out that the symbol u·, which
appears in the Euclidean dot product, can be regarded as a linear function that
takes a vector as its argument, and is, in fact, a one-form. From the scalar product
(2.40), we see that gµν plays the role of the dot, and that the functions

Uν = Uµgµν (2.43)

are the components of a unique one-form corresponding to the vector U . The
metric tensor is said to lower the index of the vector to produce a one-form. In
the same way, the metric associates a unique vector with each one-form ω: it is
the vector whose corresponding one-form is ω. Actually, this assumes that the
metric is non-singular. That is, it has an inverse matrix gµν , whose elements are
the components of a rank

(2
0

)
tensor field, such that

gµσ gσν = δνµ. (2.44)

The geometrical properties of the metric would be rather peculiar if this were not
so, and the existence of the inverse is sometimes included as part of the definition
of a metric. So long as the inverse metric does exist, we can say that it raises the
index of a one-form to produce a vector:

ωµ = gµνων . (2.45)

In fact, any index of any tensor can be raised or lowered in this way. Since gµν is
symmetric, it does not matter which of its indices is contracted.
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Now that we have a metric tensor at our disposal, it is clearly possible in
practice to regard vectors and one-forms as different versions of the same thing—
hence the terms contravariant and covariant vector. In Euclidean geometry, we
do not notice the difference, as long as we use Cartesian coordinates, because
the metric tensor is just the unit matrix. In non-Cartesian coordinates, the metric
tensor is not the unit matrix, and some consequences of this are explored in the
exercises. Does this mean that there is, after all, no real distinction between
vectors and one-forms, or between the contravariant and covariant versions of
other tensors? This depends on our attitude towards the metric. In the relativistic
theory of gravity, the metric embodies information about gravitational fields, and
different metrics may represent different, but equally possible, physical situations.
The relation between the contravariant and covariant versions of a given physical
quantity depends on the metric, and it is legitimate to ask which version is intrinsic
to the quantity itself and which is a compound of information about the quantity
itself and about the metric. To decide this, we must ask what kind of tensor would
be used to represent the quantity in question were a metric not available. For
example, the Riemann tensor that appears in (2.34) has an index µ, which is in
the upper position because it originates from parallel transport of a vector, and two
indices σ and τ that must be in the lower position because they label directions
along which the vector is being differentiated. Since metrical notions are taken
for granted in much of our physical thinking, though, the answer to this may not
always be obvious. If, as in Euclidean geometry, the metric is taken to be fixed
and unalterable, then such questions need not arise.

2.3.5 The metric connection

Now that the magnitude of a vector and the angle between two vectors have
acquired definite meanings, it is natural to demand that the rule for parallel
transport should be consistent with them. Thus, if two vectors are transported
along a curve, each one remaining parallel to itself, then the angle between them
should remain constant. This requirement leads to a relation between the metric
and the affine connection that we shall now derive. Consider a curve xµ(λ)

passing through the point P and two vectors V and W at P . We can define a
vector field V (x) such that its value at any point Q on the curve is equal to the
transported vector V (P → Q), and a similar vector field W(x). If U is the
tangent vector to the curve, then Uσ∇σ V µ is the covariant derivative of V µ along
the curve. It is given by the expression (2.22) and is clearly equal to zero, as is the
corresponding derivative of W . The consistency condition we want to impose is
that the scalar product gµνV µW ν has the same value everywhere along the curve.
Recalling that the covariant derivative of a scalar field is equal to the ordinary
derivative, we may express this condition as

Uσ∇σ (gµνV µW ν ) = 0. (2.46)
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Now, the covariant derivative of a product of tensors obeys the same Leibniz (or
product) rule as an ordinary derivative:

∇σ (gµνV µW ν ) = (∇σ gµν)V
µW ν + gµν(∇σ V µ)W ν + gµνV µ(∇σ W ν). (2.47)

Readers may verify this explicitly or turn to exercise 2.11 for some further
enlightenment. If we use this in (2.46), the last two terms vanish and our condition
becomes Uσ (∇σ gµν)V µW ν = 0. This must hold for any three vectors U , V and
W , and therefore the covariant derivative of gµν must be zero:

∇σ gµν = gµν,σ − �τ
µσ gτν − �τ

νσ gµτ = 0. (2.48)

This is sometimes expressed by saying that the metric is ‘covariantly constant’.
By combining this equation with two others obtained by renaming the indices, we
get

gσµ,ν +gσν,µ−gµν,σ = (�τ
σν −�τ

νσ )gτµ+(�τ
σµ−�τ

µσ )gτν +(�τ
µν +�τ

νµ)gτσ .

(2.49)
Assuming, as we discussed above, that the connection is symmetric in its lower
indices, the first two terms on the right-hand side vanish. Then, on multiplying
by gλσ , we find that this symmetric connection is completely determined by the
metric:

�λ
µν = 1

2 gλσ (gσµ,ν + gσν,µ − gµν,σ ). (2.50)

When �λ
µν is used to denote this expression, it is often called a Christoffel symbol.

This metric connection expresses the definition of parallelism that is implied by
the metric. In principle, there is no reason why a manifold should not possess one
or more affine connections that would be quite independent of the metric. Indeed,
it might also possess several different metrics. In such a case, there would exist
several different kinds of ‘distance’ and several different meanings of ‘parallel’.
It appears, however, that a single metric and its associated connection given by
(2.50) are sufficient to describe the properties of space and time as we know them.

Finally, we can now construct a scalar quantity that gives a measure of
curvature (though it obviously contains much less information than the full
Riemann tensor). The Ricci curvature scalar R is defined by

R = gµν Rµν (2.51)

and its interpretation in terms of a ‘radius of curvature’ is explored in
exercise 2.15.

2.4 What is the Structure of Our Spacetime?

We have now invested considerable effort in understanding the mathematical
nature of the affine and metrical structures that give precise meaning to our
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Figure 2.13. Fibre bundle structure of Galilean spacetime and the trajectory of a particle
moving through it. Each fibre is a copy of three-dimensional Euclidean space S, which
possesses a metric for measuring distances. The base manifold T has its own metric for
measuring time intervals. There is no unique way of measuring the ‘length’ of the particle’s
trajectory.

intuitive geometrical ideas. The question naturally arises, what are the particular
structures that occur in our real, physical space and time? Let us first consider
what kind of an answer is needed.

Before Einstein’s theories of relativity, it had seemed obvious that the
geometry of space was that described by Euclid. (The logical possibility of
non-Euclidean geometry had, however, been investigated rather earlier by Gauss,
Bolyai, Lobachevski, Riemann and others. The history of this subject is nicely
summarized by Weinberg (1972).) The Galilean spacetime that incorporates
Euclidean geometry does not have exactly the kind of metrical structure we have
been considering. It is a combination (in mathematical jargon, a direct product)
of two manifolds T (time) and S (space), each of which has its own metric.
This structure, illustrated in figure 2.13, is called a fibre bundle. It has a base
manifold, T , to each point of which is attached a fibre. Each fibre is a copy of
the three-dimensional Euclidean space S. A curve such as P Q R passing through
the spacetime has no well-defined length, although its projection onto one of the
fibres does have a definite length l and its projection onto T spans a definite time
interval t .

The big difference between Galilean spacetime and the spacetimes of
Einstein’s theories is that the latter are metric spaces (or, more accurately,
manifolds-with-metrics). That is, the spacetime is a manifold in which a single
metric tensor field defines, as we saw in our initial survey, the arc length of any
curve. This ‘length’ is a combination of temporal and spatial intervals, but there is
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no unique way in which the two can be separated. There is, of course, a profound
difference between space and time as we experience them, and we shall discuss
in later chapters how this difference fits in with the mathematics.

An important similarity between Galilean spacetime and the Minkowski
spacetime of special relativity is that their metrical properties are assumed to
be known a priori, as specified either by (2.39) or by (2.8). Readers may be
puzzled to see that the spatial components in (2.8) have changed sign relative to
(2.39). This is purely a matter of convention: the squared proper time intervals
in (2.3) or (2.6) are taken to be positive if the separation of two events in time
is greater than 1/c times their spatial separation, and negative otherwise. (Since
proper time intervals are scalar quantities, having the same values in all frames of
reference, this distinction is also independent of the frame in which the time and
distance measurements are made.) If we chose to think in terms of proper distance
rather than proper time, the opposite convention would be more natural, and every
component in (2.8) would have the opposite sign. In fact, both conventions are
used in the literature, although the one we are using is somewhat more popular
amongst high-energy physicists than amongst relativity theorists.

The crux of the general-relativistic theory of gravity is that neither of these
simple assumptions about the metric tensor is in fact correct. Indeed, the most
important conceptual step we have taken in this chapter is to recognize that the
metric tensor is not an intrinsic part of the spacetime manifold, but rather an object
that lives in the manifold. It is the same sort of thing as an electric or magnetic
field. Electric and magnetic fields vary with position and time in accordance
with definite physical laws, which relate them to distributions of charged particles
and currents. In the same way, the metric tensor field can be expected to vary
in accordance with its own laws of motion and to depend on the distribution of
matter. So far, we have no idea what the laws of motion for the metric tensor
field are. Electromagnetic fields are easy to produce and control under laboratory
conditions, and the laws that govern them were, for the most part, inferred from
comprehensive experimental investigations. In contrast, the gravitational forces
that are the observable manifestations of the metric tensor field are extremely
weak, unless they are produced by bodies of planetary size, and there is little hope
of deducing the laws that govern them from a series of controlled experiments.
What Einstein did was to guess at what these laws might be, assuming that they
would be reasonably similar to other known laws of physics. After one or two
false guesses, he arrived at a set of equations, the field equations of general
relativity, which are consistent with the most precise astronomical observations
that it has so far been possible to make.

With the benefit of hindsight, it is possible to see that these equations and
all the other laws of classical (non-quantum-mechanical) physics can be deduced
in exactly the same way from a single basic principle, called an action principle.
This seems to me to be most satisfactory. I should be vastly more satisfied if I
could explain why an action principle rather than something else is what actually
works, but I cannot imagine how that would be done. (It is possible to derive the
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classical action principle from what amounts to a quantum-mechanical version
of the same thing, but that is only to rephrase the question!) At this point, then,
I propose to interrupt our study of geometry to examine how classical physics
works in Galilean and Minkowski spacetimes. This is an important topic in its
own right, because classical physics and the simple spacetimes often provide
excellent approximations to the real world. In the course of understanding them,
however, we shall also meet the action principle, whereupon we shall be equipped
to embark upon general relativity and the theory of gravity.

Exercises

2.1. Consider two coordinate systems S and S′ whose spatial Cartesian axes lie in
the same three directions. The origin of S′ moves with constant velocity v relative
to S, and the origins of S and S′ coincide at t = t ′ = 0. Assume that the relation
between the two sets of coordinates is linear and that space is isotropic. The most
general form of the transformation law can then be written as

x ′ = α
[
(1 − λv2)x + (λv · x − βt)v

]
t ′ = γ

[
t − (δ/c2)v · x

]
where α, β, γ , δ and λ are functions of v2. For the case that v is in the positive x
direction, write out the transformations for the four coordinates. Write down the
trajectory of the S′ origin as seen in S and that of the S origin as seen in S′ and
show that β = 1 and α = γ . Write down the trajectories seen in S and S′ of a light
ray emitted from the origin at t = t ′ = 0 that travels in the positive x direction,
assuming that it is observed to travel with speed c in each case. Show that δ = 1.
The transformation from S′ to S should be the same as the transformation from S
to S′, except for the replacement of v by −v. Use this to find γ . By considering
the equation of the spherical wavefront of a light wave emitted from the origin at
t = t ′ = 0, complete the derivation of the Lorentz transformation (2.2).

2.2. Two coordinate frames are related by the Lorentz transformation (2.2). A
particle moving in the x direction passes their common origin at t = t ′ = 0
with velocity u and acceleration a as measured in S. Show that its velocity and
acceleration as measured in S′ are

u′ = u − v

1 − uv/c2
a′ = (1 − v2/c2)3/2

(1 − uv/c2)3
a.

2.3. A rigid rod of length L is at rest in S′, with one end at x ′ = 0 and the other
at x ′ = L. Find the trajectories of the two ends of the rod as seen in S and show
that the length of the rod as measured in S is L/γ , where γ = (1 − v2/c2)−1/2.
This is the Fitzgerald contraction. If the rod lies along the y ′ axis of S′, what is
its apparent length in S? A clock is at rest at the origin of S′. It ticks at t ′ = 0
and again at t ′ = τ . Show that the interval between these ticks as measured in S
is γ τ . This is time dilation.
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2.4. As seen in S, a signal is emitted from the origin at t = 0, travels along the
x axis with speed u, and is received at time τ at x = uτ . Show that, if u > c2/v

then, as seen in S′, the signal is received before being sent. Show that if such
paradoxes are to be avoided, no signal can travel faster than light.

2.5. A wheel has a perfectly rigid circular rim connected by unbreakable joints to
perfectly rigid spokes. When measured at rest, its radius is r and its circumference
is 2πr . When the wheel is set spinning with angular speed ω, what, according to
exercise 2.3, is the apparent circumference of its rim and the apparent length of
its spokes? What is the speed of sound in a solid material of density ρ whose
Young’s modulus is Y ? Is the notion of a perfectly rigid material consistent with
the conclusion of exercise 2.4?

2.6. Consider the following three curves in the Euclidean plane with Cartesian
coordinates x and y: (i) x = 2 sinλ, y = 2 cosλ, 0 ≤ λ < 2π ; (ii)
x = 2 cos(s/2), y = 2 sin(s/2), 0 ≤ s < 4π ; (iii) x = 2 cos(eµ), y = 2 sin(eµ),
−∞ < µ ≤ ln(2π). Show that all three curves correspond to the same path,
namely a circle of radius 2. Show that λ and s are affinely related. What is the
special significance of s? Find the components of the tangent vectors to each
curve. Compare the magnitudes and directions of the three tangent vectors at
various points on the circle. What is special about the tangent vectors to curve
(ii)?

2.7. Consider a four-dimensional manifold and a specific system of coordinates
xµ. You are given four functions, a(xµ), b(xµ), c(xµ) and d(xµ). Can you tell
whether these are (i) four scalar fields, (ii) the components of a vector field, (iii)
the components of a one-form field or (iv) none of these? If not, what further
information would enable you to do so?

2.8. In the Euclidean plane, with Cartesian coordinates x and y, consider
the vector field V whose components are V x = 2x and V y = y, and the
one-form field ω f which is the gradient of the function f = x2 + y2/2.
Show that in any system of Cartesian coordinates x ′ = x cosα + y sinα,
y ′ = y cosα − x sin α, where α is a fixed angle, the components of ω f are
identical to those of V . In polar coordinates (r, θ), such that x = r cos θ and
y = r sin θ , show that V has components (r(1 + cos2 θ),− sin θ cos θ) while ω f

has components (r(1 + cos2 θ),−r2 sin θ cos θ). Note that the ‘gradient vector’
defined in elementary vector calculus to have the components (∂ f/∂r, r−1∂ f/∂θ)
does not correspond to either V or ω f .

2.9. Given a rank
(a

b

)
tensor, show that the result of contracting any upper index

with any lower index is a rank
(a−1

b−1

)
tensor.

2.10. In the Euclidean plane, parallel transport is defined in the obvious way. If, in
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Cartesian coordinates, the components of V (P) are (u, v), then the components of
V (P → Q) are also (u, v). Thus, the affine connection coefficients in Cartesian
coordinates are all zero. Work out the matrices �

µ′
µ for transforming between

Cartesian and polar coordinates related by x = r cos θ and y = r sin θ . Show that
in polar coordinates, the only non-zero connection coefficients are �r

θθ = −r
and �θ

rθ = �θ
θr = 1/r . Let P and Q be the points with Cartesian coordinates

(a, 0) and (a cosα, a sin α) respectively, and let V (P) have Cartesian components
(1, 0). Using polar coordinates and parallel transport around the circle of radius a
centred at the origin and parametrized by the polar angle θ , show that V (P → Q)

has polar components (cosα,−a−1 sin α). By transforming this result, verify that
V (P → Q) has Cartesian components (1, 0). [N.B. The notation here is intended
to be friendly: if, say, x1 = r and x2 = θ , then �r

θθ means �1
22 and so on.]

2.11. The covariant derivatives of tensors of arbitrary rank can be defined
recursively by the following rules: (i) for a scalar field f , we take ∇σ f = ∂σ f ;
(ii) the covariant derivative of a vector field is given by (2.24); (iii) the covariant
derivative of a rank

(a
b

)
tensor is a tensor of rank

( a
b+1

)
; (iv) for any two tensors A

and B , the Leibniz rule ∇σ (AB) = (∇σ A)B + A(∇σ B) holds. By considering
the fact that ω(V ) = ωµV µ is a scalar field, show that the covariant derivative
of a one-form is given by (2.27). Convince yourself that the recursive definition
leads to (2.28) for an arbitrary tensor field.

2.12. In the Euclidean plane, consider the straight line x = a. Using λ = y
as a parameter, show, in both Cartesian and polar coordinates, that the geodesic
equation (2.31) is satisfied and that λ is an affine parameter. Repeat the exercise
using both affine and non-affine parameters of your own invention.

2.13. Write down the components of the metric tensor field of the Euclidean
plane in the polar coordinates of exercise 2.8. Show, using both Cartesian and
polar coordinates, that the vector V is obtained by raising the indices of ω f and
vice versa. Show that |V |2 = ω f (V ). What is the magnitude of the ‘gradient
vector’? How does it involve the metric? Can a ‘gradient vector’ be defined in a
manifold with a non-Euclidean metric, or in a manifold that possesses no metric?

2.14. Show that the affine connection of exercise 2.10 is the metric connection.

2.15. In three-dimensional Euclidean space, define polar coordinates in the usual
way by x = r sin θ cosφ, y = r sin θ sin φ and z = r cos θ . The spherical surface
r = a is called a 2-sphere, and the angles θ and φ can be used as coordinates for
this two-dimensional curved surface. Show that the line element on the sphere
is ds2 = a2(dθ2 + sin2 θ dφ2). Show that the only non-zero coefficients of the
metric connection are �θ

φφ = − sin θ cos θ and �
φ
θφ = �

φ
φθ = cot θ . Show that

the Ricci tensor is diagonal, with elements Rθθ = 1 and Rφφ = sin2 θ , and that
the Ricci scalar is R = 2/a2.




